Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 96(14): 5694-5701, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538547

RESUMO

Immunochromatography is a commonly used immediate detection technique, using signal labels to generate detection signals for rapid medical diagnosis. However, its detection sensitivity is affected by background fluorescence caused by the excitation light source. We have developed an immunochromatographic test strip using Zn2GeO4:Mn2+ (ZGM) persistent luminescent nanoparticles (PLNPs) for immediate fluorescence detection and highly sensitive persistent luminescence (PersL) detection without background fluorescence interference. ZGM emits a strong green light when exposed to ultraviolet (UV) excitation, and its green PersL can persist for over 30 min after the excitation light is turned off. We modified the surface of ZGM with heparin-binding protein (HBP) antibodies to create immunochromatographic test strips for the detection of HBP as the target analyte. Under UV excitation, the chromatography test paper can be visually observed at concentrations as low as 25 ng/mL. After the excitation light source is switched off, PersL can achieve a detection limit of 4.7 ng/mL without background interference. This dual-mode immunochromatographic detection, based on ZGM, shows great potential for in vitro diagnostic applications.


Assuntos
Germânio , Luminescência , Nanopartículas , Nanopartículas/química , Óxidos , Cromatografia de Afinidade/métodos
2.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470221

RESUMO

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Assuntos
Produtos da Carne , Carne , Aminas , Antioxidantes , Carcinógenos
3.
ACS Nano ; 18(8): 6500-6512, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348833

RESUMO

Atherosclerosis (AS) is a crucial contributor to various cardiovascular diseases (CVDs), which seriously threaten human life and health. Early and accurate recognition of AS plaques is essential for the prevention and treatment of CVD. Herein, we introduce an AS-targeting nanoprobe based on near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), developing a highly sensitive NIR persistent luminescence (PersL) AS plaque imaging technique and successfully realizing early AS plaque detection. The nanoprobe exhibits good monodispersity and regular spherical morphology and also owns exceptional NIR PersL performance upon repetitive irradiation by biological window light. The surface-conjugated antibody (anti-osteopontin) endowed nanoprobe excellent targeting ability to foam cells within plaques. After intravenously injected nanoprobe into AS model mice, the highly sensitive PersL imaging technique can accurately detect AS plaques prior to ultrasonography (US) and magnetic resonance imaging (MRI). Specifically, the NIR PersL imaging reveals AS plaques at the earliest within 2 weeks, with higher signal-to-background ratio (SBR) up to 5.72. Based on this technique, the nanoprobe has great potential for applications in the prevention and treatment of CVD, the study of AS pathogenesis, and the screening of anti-AS drugs.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Animais , Camundongos , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Luminescência , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia
4.
Polymers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276689

RESUMO

Infected bone defects represent a common clinical condition involving bone tissue, often necessitating surgical intervention and antibiotic therapy. However, conventional treatment methods face obstacles such as antibiotic resistance and susceptibility to postoperative infections. Hydrogels show great potential for application in the field of tissue engineering due to their advantageous biocompatibility, unique mechanical properties, exceptional processability, and degradability. Recent interest has surged in employing hydrogels as a novel therapeutic intervention for infected bone repair. This article aims to comprehensively review the existing literature on the anti-microbial and osteogenic approaches utilized by hydrogels in repairing infected bones, encompassing their fabrication techniques, biocompatibility, antimicrobial efficacy, and biological activities. Additionally, the potential opportunities and obstacles in their practical implementation will be explored. Lastly, the limitations presently encountered and the prospective avenues for further investigation in the realm of hydrogel materials for the management of infected bone defects will be deliberated. This review provides a theoretical foundation and advanced design strategies for the application of hydrogel materials in the treatment of infected bone defects.

5.
Foods ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685127

RESUMO

In the current study, apple-pectin-based novel nanofibers were fabricated by electrospinning. Polyvinyl alcohol (PVA) and apple pectin (PEC) solution were mixed to obtain an optimized ratio for the preparation of electrospun nanofibers. The obtained nanofibers were characterized for their physiochemical, mechanical and thermal properties. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Furthermore, an assay of the in vitro viability of free and encapsulated probiotics was carried out under simulated gastrointestinal conditions. The results of TGA revealed that the PVA/PEC nanofibers had good thermal stability. The probiotics encapsulated by electrospinning showed a high survival rate as compared to free cells under simulated gastrointestinal conditions. Furthermore, encapsulated probiotics and free cells showed a 3 log (cfu/mL) and 10 log (cfu/mL) reduction, respectively, from 30 to 120 min of simulated digestion. These findings indicate that the PVA/PEC-based nanofibers have good barrier properties and could potentially be used for the improved viability of probiotics under simulated gastrointestinal conditions and in the development of functional foods.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3520-3529, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37622377

RESUMO

"Biochemical Engineering Experiment" is a compulsory curriculum for the concentrated practical teaching of biotechnology majors in Hunan University of Science and Engineering. It is also an experimental curriculum for improving the overall quality of bioengineering students under the context of "Emerging Engineering Education". The course includes comprehensive experiments and designable experiments, and the contents of which are designed by combining the local characteristic resources of Yongzhou, the research platform and the characteristics of the talents with engineering background. In the teaching practice, methods such as heuristic teaching, research cases-embedded teaching and interactive teaching are comprehensively used to boost students' interest in learning and stimulate their innovative thinking and application capability. Through curriculum examination and post-class investigation, it was found that the students' abilities of knowledge transfer and application were significantly improved, and they achieved excellent performances in discipline competitions and approved project proposals. The practice and continuous improvement of this course may facilitate fostering high-level innovative and application-oriented talents of biotechnology majors.


Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Bioengenharia , Engenharia Biomédica
7.
Materials (Basel) ; 16(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512470

RESUMO

This work studied the phase constitution, bond characteristics, and microwave dielectric performances of Sr2TiO4 ceramics. Based on XRD and Rietveld refinement analysis, pure tetragonal Ruddlesden-Popper type Sr2TiO4 ceramic is synthesized at 1425~1525 °C. Meanwhile, the microstructure is dense and without porosity, indicating its high sinterability and densification. Great microwave dielectric performances can be obtained, namely an εr value of 39.41, and a Q × f value of 93,120 GHz, when sintered at 1475 °C. Under ideal sintering conditions, the extrinsic factors are minimized and can be ignored. Thus, the intrinsic factors are considered crucial in determining microwave dielectric performances. Based on the P-V-L complex chemical bond theory calculation, the largest bond ionicity, and proportions to the bond susceptibility from Sr-O bonds suggest that Sr-O bonds mainly determine the dielectric polarizability. However, the Ti-O bonds show lattice energy about three times larger than Sr-O bonds, emphasizing that the structural stability of Sr2TiO4 ceramics is dominated by Ti-O bonds, and the Ti-O bonds are vital in determining the intrinsic dielectric loss. The thermal expansion coefficient value of the Sr2TiO4 structure is also mainly decided by Ti-O bonds.

8.
Placenta ; 139: 159-171, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406553

RESUMO

INTRODUCTION: Fetal growth restriction (FGR) is a common complication of pregnancy. Lipid metabolism and distribution may contribute to the progression of FGR. However, the metabolism-related mechanisms of FGR remain unclear. The aim of this study was to identify metabolic profiles associated with FGR, as well as probable genes and signaling pathways. METHODS: Metabolomic profiles at the maternal-fetal interface (including the placenta, maternal and fetal serum) from pregnant women with (n = 35) and without (n = 35) FGR were analyzed by gas chromatography-mass spectrometry (GC-MS). Combined with differentially expressed genes (DEGs) from the GSE35574 dataset, analysis was performed for differential metabolites, and identified by the Metabo Analyst dataset. Finally, the pathology and screened DEGs were further identified. RESULTS: The results showed that fatty acids (FAs) accumulated in the placenta and decreased in fetal blood in FGR cases compared to controls. The linoleic acid metabolism was the focus of placental differential metabolites and genes enrichment analysis. In this pathway, phosphatidylcholine can interact with PLA2G2A and PLA2G4C, and 12(13)-EpOME can interact with CYP2J2. PLA2G2A and CYP2J2 were elevated, and PLA2G4C was decreased in the FGR placenta. DISCUSSION: In conclusion, accumulation of FAs in the placental ischemic environments, may involve linoleic acid metabolism, which may be regulated by PLA2G2A, CYP2J2, and PLA2G4C. This study may contribute to understanding the underlying metabolic and molecular mechanisms of FGR.


Assuntos
Retardo do Crescimento Fetal , Placenta , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal/patologia , Placenta/metabolismo , Metabolismo dos Lipídeos , Citocromo P-450 CYP2J2 , Ácidos Linoleicos/metabolismo
9.
J Assist Reprod Genet ; 40(7): 1597-1610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300650

RESUMO

PURPOSE: Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS: The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS: The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION: This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Trofoblastos/metabolismo , Pré-Eclâmpsia/patologia , Hibridização in Situ Fluorescente , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
10.
Front Pharmacol ; 14: 1052301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794282

RESUMO

Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.

11.
Int J Biol Macromol ; 233: 123532, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740110

RESUMO

There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) via a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both in vitro and in vivo. Significantly, the hemostatic time of the CMCS/SA-K60 sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.


Assuntos
Quitosana , Hemostáticos , Ratos , Animais , Quitosana/química , Caulim/química , Alginatos/química , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Hemorragia/tratamento farmacológico
12.
Macromol Biosci ; 23(4): e2200514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662610

RESUMO

Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca2+ , and ionic cross-linking is facilitated by lowering the solution pH. The resulting sodium alginate/gelatin HX-12C-loaded hydrogel (CaAGEAM) has good mechanical and adhesion properties, biocompatibility and in vitro degradability. Its extraordinary antibacterial efficacy (>98%) is verified by an antibacterial experiment. More importantly, in vivo experiments further demonstrate its healing-promotion effect, with a 95% wound healing rate by day 9. Tissue staining demonstrates that the hydrogel containing antimicrobial peptides is effective in suppressing inflammation. The dressing promotes wound healing by stimulating the deposition of skin appendages and collagen. The results of this study suggest that composite hydrogels containing antimicrobial peptides are a promising new type of dressing to promote the healing of infected wounds.


Assuntos
Gelatina , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Peptídeos Antimicrobianos , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Alginatos/farmacologia , Alginatos/química
13.
Int J Biol Macromol ; 231: 123209, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639078

RESUMO

Chitosan (CS) films were developed incorporating peptide HX-12C. The films were studied to determine their microstructures, physical properties, release properties of peptide HX-12C and functional properties. The results indicated that there may be hydrogen bonding interactions between CS and peptide HX-12C, thereby creating a homogeneous internal microstructure and lower crystallinity (10.8-12.8 %). Compared with CS film, CS-HX-12C films displayed lower light transmission, MC (20.8-19.9 %), WVP (8.82-8.59 × 10-11·g·m-1·s-1·Pa-1), OTR (0.015-0.037 cc/(m2.day)) and higher WS (15.7-32.4 %) values. Moreover, controlled-release experiments showed that pH, ionic strength and temperature could all significantly affect the release of peptide HX-12C from the films. Finally, the increase of pH value and TVC and lipid oxidation of fresh pork were delayed due to the treatment with CS-2%HX-12C film. However, incorporating peptide HX-12C into CS films did not improve the mechanical properties of the films and their effects against protein oxidation. Our results suggest that the CS-based antimicrobial packaging films integrated with peptide HX-12C exhibit the potential for fresh pork preservation.


Assuntos
Quitosana , Carne de Porco , Carne Vermelha , Animais , Suínos , Quitosana/química , Embalagem de Alimentos/métodos , Peptídeos Antimicrobianos
14.
Eur J Pharm Sci ; 181: 106363, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529161

RESUMO

Among other health related issues, the rising concerns on drug resistance led to look for alternative pharmaceutical drugs that are effective both against infectious and noninfectious diseases. Antimicrobial peptides (AMPs) emerged as potential therapeutic molecule with wide range of applications. With their limitations, AMPs have gained reputable attentions in research as well as in the pharmaceutical industry. This review highlighted the historical background, research trends, technological advancements, challenges, and future perspectives in the development and applications of peptide drugs. Some vital questions related with the need for pharmaceutical production, factors for the slow and steady journey, the importance of oral bioavailability, and the drug resistance possibilities of AMPs were raised and addressed accordingly. Therefore, the current study is believed to provide a profound understanding in the past and current scenarios and future directions on the therapeutic impacts of peptide drugs.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Doenças Transmissíveis/tratamento farmacológico
15.
Front Bioeng Biotechnol ; 10: 955713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061450

RESUMO

Herpes disease is caused by Herpes simplex virus (HSV). It has become one of the global health problems. This paper reports a method for HSV type testing. First specific primers sequence for HSV-1 and HSV-2 were selected, designed, and synthesized. Then, these amplification products were proved by sequencing and analysis. Lastly, we optimized the reaction system and PCR reaction program by orthogonal design and sensitivity testing. Results showed that the lowest concentration in HSV-type testing is about 6.67 × 106 copies/ml. Moreover, the specificity of detection was very high. So, this method has very great potentials for HSV type testing in clinical practice.

16.
Br J Cancer ; 127(1): 30-42, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35249103

RESUMO

BACKGROUND: Clear-cell renal-cell carcinoma (ccRCC) is one of the leading causes of tumour-related death worldwide. Methyltransferase-like 14 (METTL14) is reported to regulate m6A modification in cancers. The aim of this study is to investigate the biological function and molecular mechanism of METTL14 in the pathogenesis of ccRCC. METHODS: Quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) assays were used to detect the expression of METTL14 and Pten. METTL14 overexpression or knockdown was used in the in vitro and in vivo studies to investigate the biological functions of METTL14. m6A-RNA immunoprecipitation and RNA immunoprecipitation were used to investigate the m6A modification mediated by METTL14. RESULTS: METTL14 expression was significantly down-regulated in ccRCC tissues. Functionally, upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. METTL14 overexpression significantly inhibited the activation of the phosphoinositide 3 kinase (PI3K)/AKT signalling pathway. Furthermore, phosphate and tension homology deleted on chromosome ten (Pten) is a target of METTL14. Overexpression of METTL14 increased the m6A enrichment of Pten, and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1. CONCLUSIONS: METTL14-mediated m6A modification of Pten mRNA inhibited tumour progression, suggesting that METTL14 might be a potential prognostic biomarker and effective therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Metiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
ACS Appl Mater Interfaces ; 13(45): 53586-53598, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739202

RESUMO

Highly efficient elimination of petroleum pollution is of great importance for addressing environmental issues and social sustainability. In this study, we demonstrate a novel strategy for efficient elimination of petroleum pollution by selective adsorption of it by an ultralight hydrophobic/lipophilic microorganism-loaded biomass porous foam (BTS-MSFT4@MTMS) followed by a green degradation of adsorbates under mild conditions. The porous structure of biomass porous foam (MSFT) could provide plenty of room for immobilization of Bacillus thuringiensis (BTS), while a simple surface modification of the MSFT load with a BTS strain (BTS-MSFT4) by methyltrimethoxysilane (MTMS) could change its wettability from hydrophilic to lipophilic, which makes selective adsorption of hydophobic petroleum pollution from water for biodegradation possible. As expected, using a petroleum n-hexadecane solution with a concentration of 3% as a model oily wastewater, the as-prepared BTS-MSFT4@MTMS possesses both a superior selective adsorption of ca. 99% and high degradation activity with a high degradation rate of up to 86.65% within 8 days under the conditions of 37 °C, 120 r min-1, and pH = 7, while the degradation rates for the BTS-MSFT4 and the free BTS strain were measured to be only 81.62 and 65.65%, respectively, under the same conditions. In addition, the results obtained from the study on environment tolerance show that the BTS-MSFT4@MTMS exhibits a strong tolerance under different conditions with various pHs, temperatures, and initial concentrations. Compared with the existing methods for removal of petroleum pollution by direct adsorption of petroleum pollution via superoleophilic porous materials or applying free microorganisms for biodegradation only, which suffers the drawbacks of low selectivity or poor efficiency, our method has great advantages of cost-effectiveness, scalable fabrication, and high efficiency without secondary pollution. Moreover, such a two-in-one strategy by integration of both selective adsorption and biodegradation into biodegradable BTS-MSFT4@MTMS may particularly have great potential for practical application in environmental remediation.


Assuntos
Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Petróleo/metabolismo , Adsorção , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Biodegradação Ambiental , Biomassa , Hidrocarbonetos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Sci Rep ; 11(1): 13483, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188069

RESUMO

Valproic acid (VPA) is widely used as a eutherapeutic and safe anticonvulsant drug, but the mechanism is not well elucidated. Histone deacetylases (HDACs) were first identified as direct targets of VPA. Many loss-of function mutants in S. pombe have been shown to be VPA sensitive but not sensitive to other HDAC inhibitors, such as sodium butyrate or trichostatin A (TSA). This difference suggests that there are multiple VPA target genes. In the current study, we isolated a VPA-sensitive (vas) mutant, vas4-1, and cloned the VPA target gene vas4+/vrg4+ by performing complementation experiments. The vas4+/vrg4+ gene encodes a putative Golgi GDP-mannose transporter, Vrg4, which is highly homologous with ScVrg4p. Physiological experiments indicated that SpVrg4p is involved in maintaining cell wall integrity (CWI) under high- or low-temperature stress. The results of a coimmunoprecipitation assay suggested that SpVrg4p may be transferred from the ER to the Golgi through SpGot1p loaded COPII vesicles, and both single and double mutations (S263C and A271V) in SpVrg4p compromised this transfer. Our results suggested that CWI in S. pombe is compromised under temperature stress by the VPA-sensitive vas4 mutant.


Assuntos
Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Proteínas de Membrana Transportadoras/biossíntese , Mutação , Schizosaccharomyces/metabolismo , Ácido Valproico/farmacologia , Parede Celular/genética , Proteínas de Membrana Transportadoras/genética , Schizosaccharomyces/genética
19.
Open Med (Wars) ; 15(1): 1054-1060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33336061

RESUMO

The coronavirus disease 2019 (COVID-19) has become a global pandemic, which is induced by infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with systemic lupus erythematosus (SLE) are susceptible to infections due to the chronic use of immunosuppressive drugs and the autoimmune disorders. Now we report a case of SLE infected with SARS-CoV-2, influenza A virus and Mycoplasma pneumoniae concurrently. The patient used hydroxychloroquine and prednisone chronically to control the SLE. After infection of SARS-CoV-2, she was given higher dose of prednisone than before and the same dosage of hydroxychloroquine. Besides, some empirical treatments such as antiviral, antibiotic and immunity regulating therapies were also given. The patient finally recovered from COVID-19. This case indicated that hydroxychloroquine may not be able to fully protect SLE patient form SARS-CoV-2. Intravenous immunoglobulin therapies and increased dose of corticosteroids might be adoptable for patient with both COVID-19 and SLE. Physicians should consider SARS-CoV-2 virus test when SLE patient presented with suspected infection or SLE flare under the epidemic of COVID-19.

20.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126726

RESUMO

Since the fluctuation of cellular selenocysteine (Sec) concentration plays an all-important role in the development of numerous human disorders, the real-time fluorescence detection of Sec in living systems has attracted plenty of interest during the past decade. In order to obtain a faster and more sensitive small organic molecule fluorescence sensor for the Sec detection, a new ratiometric fluorescence sensor Q7 was designed based on the fluorescence resonance energy transfer (FRET) strategy with coumarin fluorophore as energy donor and 4-hydroxy naphthalimide fluorophore (with 2,4-dinitrobenzene sulfonate as fluorescence signal quencher and Sec-selective recognition site) as an energy acceptor. The sensor Q7 exhibited only a blue fluorescence signal, and displayed two well distinguished emission bands (blue and green) in the presence of Sec with ∆λ of 68 nm. Moreover, concentrations ranging of quantitative detection of Sec of Q7 was from 0 to 45 µM (limit of detection = 6.9 nM), with rapid ratiometric response, high sensitivity and selectivity capability. Impressively, the results of the living cell imaging test demonstrated Q7 has the potentiality of being an ideal sensor for real-time Sec detection in biosystems.


Assuntos
Transferência Ressonante de Energia de Fluorescência/instrumentação , Imagem Óptica/instrumentação , Selenocisteína/metabolismo , Células A549 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...